Rabu, 24 Juni 2009

CCD (CHARGE COUPLED DEVICE)

CCD (Charge Coupled Device)

Sejarah

Tahun, 1969 F.Sangster dan K. Teer dari Philips Research Lab menemukan Bucket-Brigade Device (BBD). Alat ini pada dasarnya mentransfer paket muatan dari satu transistor ke transistor lain.

Pengembangan dari konsep ini akhirnya dilakukan oleh Willard Boyle dan George Smith dari Bell Laboratories. Bedanya kali ini merupakan transfer muatan dari satu kapasitor ke kapasitor lain, dan diberi nama CCD.

Awalnya didesain untuk memori, tetapi akhirnya ditemukan bahwa CCD sensitif terhadap cahaya, sehingga akhirnya dikembangkan sebagai sensor visual.

Definisi :

Integrated Circuit (IC) yang sensitif terhadap cahaya dan mampu menyimpan dan menampilkan data dari sebuah gambar dengan cara tiap pixel dari gambar dikonversi ke dalam bentuk muatan elektrik dengan intensitas yang sesuai dengan spektrum warna. CCD mempunyai sejumlah besar (mungkin 1000) gerbang/gate yang berjarak dekat, di antara sumber dan drain, sehingga susunan demikian dapat dibuat komponen yang berfungsi sebagai register geser. CCD merupakan peralatan unipolar.

Operasi arus searah (dc) dari CCD tidak mungkin dilakukan. Pembawa-pembawa yang ditimbulkan secara teknis terperangkap dalam kanal energi potensial yang kosong dan pada saat yang sama merubah keadaan logika dari 0 ke 1. gejala perubahan ini dinamakan pengaruh arus gelap yang dapat menentukan batas bawah frekuensi clock (50 Khz – 1 Mhz). Sel CCD tidak memerlukan daya yang stationer, karena daya didisipasikan hanya untuk pengisian kapasitansi sel aktif. Akibatnya batas atas dari frekuensi clock (1 sampai 10 Mhz) mungkin dapat ditentukan oleh disipasi daya maksimum yang diperkenankan.

Struktur CCD

Peralatan kopel muatan tidak dapat dirakit dari komponen-komponen diskrit, karena suatu kanal kontinu tunggal diperlukan untuk mengkopel antara daerah di bawah elektroda-elektroda. Gerbang-gerbang arus dipisahkan oleh jarak yang sangat sempit (sekitar 1 μm). Celah yang sangat sempit ini sangat sulit sekali dietsa secara handal karena adanya ketidaksempurnaan kedok (mask), cacat pada fotoemulsi, partikel debu dan sebagainya.

Organisasi Memori CCD

Pengingat CCD menjembatani pebedaan antara RAM dan pengingat piringan magnetik berkala tetap (disk). Pengingat CCD lebih murah dibandingkan dengan RAM, tetapi waktu aksesnya lebih lambat karena operasinya secara seri.

Tiga (3) Organisasi yang Umum dipergunakan :

a. Operasi yang berliku-liku (Serpentive)

Suatu organisasi sinkron di mana data digeserkan dari sel satu ke sel berikutnya, yang panjang pada konfigurasi register geser resirkulasi. Perpindahan sel satu ke sel berikutnya sangat efisien.

b. LARAM (Line-Adressable Random Acces Memory)

LARAM adalah organisasi yang dioptimasikan untuk memberikan waktu akses yang singkat. Organisasi ini terdiri dari sejumlah pengingat resirkulasi CCD singkat yang bekerja secara paralel, yang meliputi baris-baris masukan dan keluaran yang umum.

c. Organisasi SPS (Seri-Paralel-Seri)

Konfigurasi ini menggambarkan suatu bentuk masukan bit yang di susun secara paralel lalu disimpan ke dalam register vertikal dan dipindahkan ke register keluar horisontal lalu keluarannya digeser secara seri dan kemudian masuk ke dalam sistem. Beberapa keuntungan dari SPS adalah daya yang rendah, hilangnya penguat geser di dalam, kapasitansi clock yang rendah, dan kecepatan yang sangat tinggi.

Cara Kerja CCD

· Lensa menerima cahaya dan meneruskan ke CCD

· Fotodioda pada CCD merespon cahaya yang mengenainya. Cahaya ini direspon fotodioda dengan menghasilkan muatan sesuai dengan spektrum warna yang diterimanya.

· Muatan tersebut akhirnya ditransfer ke kapasitor. Dan tiap kapasitor dapat mentransfer muatan listrik dari satu kapasitor ke kapasitor lain.

· Muatan listrik tersebut masuk ke analog signal chain untuk diolah di ADC. Semua proses ini dikontrol oleh sebuah clock signal.

Contoh Aplikasi

· Kamera digital

· Scanner

· Barcode reader

· Sensor Visual untuk Robot

Teknologi Rangkaian Logika Digital

Integrated Injection Logic (IIL)

Teknologi Bipolar

è TRL (Transistor Resistor Logic)

· Jumlah resistor dimaksimalkan (resistordevais termurah)

è DRL (Dioda Transistor Logic)

· Kinerja ditingkatkan dgn mengganti kebanyakan resistor dgn dioda semikonduktor

è RTL (Resistor Transistor Logic)

· Teknologi mikroelektornika pertama

· Menggunakan banyak transistor dan hanya sedikit resistor

è TTL (Transistor Transistor Logic)

· transistors berjumlah banyak dan terkait laungsung satu sama lain; Sampai sekarang tetap menjadi teknologi bipolar paling populer

è I2L (Integrated-injection logic)

· Technology mereduksi kerapatan packing dari devais bipolar devices ke suatu ukuran mendekati ukuran devais MOSmelalui “compressing” suatu rangkaian logika yang terdiri dari dua transistor menjadi suatu satuan tunggal (a single unit).

· I2L dibuat dengan menggunakan teknologi bipolar dan menggabungkan (merger) beberapa komponen semikonduktor.

· I2L terdiri dari transistor pnp yang berperan sebagai injektor arus untuk mengumpan arus basis untuk inverter transistor npn multi kolektor.

· Fabrikasinya hanya memerlukan proses kedok (mask) yang lebih sedikit dibandingkan BJT standar. Kerapatan kemasan lebih tinggi dari BJT (300 gerbang/mm2), sebanding dengan MOSFET.

· Sistem I2L bisa dipergunakan dalam pembuatan gerbang inverter, gerbang NAND, NOR, AND OR INVERTER (AOI) dan flip-flop.

· Sistem I2L dapat diterapkan pada jam tangan digital, konverter A/D dan D/A, RAM dan mikroprosesor.

è ECL (emmitter-coupled logic)

· Devais dikembangkan untuk aplikasi-2 yg membutuhkan kecepatan yang sangat tinggi (extremely high speed).

· Mengkonsumi lebih banyak energi/power,

· digunakan secara ekslusif pada komputer-2 Cray

Jumat, 12 Juni 2009

MIKROPROSESOR, MIKROKOMPUTER & MIKROKONTROLER

Mikroprosesor

Mikroprosesor adalah suatu chip (IC=Integrated Circuits) yang di dalamnya terkandung rangkaian ALU (Arithmetic-Logic Unit), rangkaian CU (Control Unit) dan register-register. Mikroprosesor disebut juga dengan CPU (Central Processing Unit).

Kata mikroprosesor dalam pengertian yang lebih luas berarti hanya sebuah CPU. Untuk membentuk sebuah board mikroprosesor yang lengkap blok-blok fungsional seperti memori, dan peripheral lainnya harus dihubungkan secara eksternal ke sebuah chip mikroprosesor. Sistem yang dibangun dengan cara ini disebut sebagai “Single-Board Microcomputer”. Contoh mikroprosesor adalah 8085, 8086 dan 80486.

Seperti yang telah didiskusikan pada bagian sebelumnya, jika melihat kebutuhan desain dari otomatisasi kita memerlukan sebuah perangkat yang mana semua blok-blok fungsional tadi terdapat dalam sebuah IC. Oleh karena itu konsep ‘single-chip’ mikrokomputer menjadi kenyataan, dan single-chip mikrokomputer ini adalah ‘Mikrokontroler’. Contoh-contoh dari mikrokontroler adalah Intel MCS-51, keluarga PIC dari Microchip, Atmel 89CXX, 89CXX51. Mikrokontroler dapat diprogram dan memilliki blok-blok fungsional yang sesuai jika dipadukan dengan kebutuhan desain elektronik yang lebih umum.

Salah satu kelas penting lain dari mikroprosesor adalah ‘Bit-Slice Processor’. Istilah bit-slice prosesor berarti bahwa prosesor dapat diinterkoneksikan kedalam bentuk potongan-potongan prosesor yang lebar wordnya dapat ditentukan. Bit-slice prosesor terdiri dari 4 atau 8 bit ALU, register, dan jalur kendali. Jalur kendali terkoneksi pada setiap prosesor-prosesor dan semua prosesor tersebut dapat melakukan operasi yang sama. Contoh bit-slice prosesor adalah AMD seri 2900. Desain bit-slice prosesor memilki beberapa keuntungan. Keuntungan yang pertama adalah ALU dapat digabungkan untuk membentuk komputer yang bisa mengelola data yang cukup besar dalam satu waktu. Keuntungan desain bit-slice prosesor lainnya adalah dapat menggunakan teknologi chip bipolar yang sangat cepat. Lebih jauh lagi, desain bit-slicememungkinkan penggunanya membuat set intruksi sendiri untuk aplikasi-aplikasi yang mereka ciptakan.

Struktur Mikroprosesor


Sejarah Mikrokontroler dan Mikroprosesor

ndoware_intel_40401

Semenjak kelahiran mikroprosesor, banyak mikroprosesor/mikrokontroler 4, 8, 16, dan 32 bit yang dikembangkan dan bermunculan di pasaran. Intel 4004 adalah 4-bit prosesor pertama yang muncul pada tahun 1971. Intel 4004 memiliki kapasitas 8-bit instruksi dan 4-bit proses data, memori eksternal terpisah untuk program (4K) dan data (1K). Ada 46 instruksi yang tereksekusi dalam satu clock (740 kHz). Lalu selama tahun 1972 intel mengembangkan 4040 yang merupakan versi advance dari 4004. 4040 memiliki 14 instruksi lebih banyak dengan 8K memori program dan juga sudah memiliki kemampuan interupsi.

Di tahun 1974 Texas Instrument mengenalkan mikrokontroler pertama TMS 1000. TMS 100 memiliki on-chip RAM, ROM dan I/O. Lalu di tahun 1974 Intel memperkenalkan 8080 yang merupakan versi advancedari 8008 yang telah diluncurkan sebelumnya di tahun 1972. Yang paling populer di tahun 1976 Intel mengembangkan 8085. Seri ini dapat beorperasi pada +5V dan frekuensi 3 MHz. Di tahun yang sama Zilog Z-80 muncul dengan kemampuan lebih baik dari 8080. Z80 beoperasi pada frekuensi 2,5 MHz dan frekuensi dalam CMOS (Complementary Metal Oxide Semiconductor) 10 MHz.

ndoware_intel_8080Seketika setalah Intel muncul dengan 8080 di tahun 1975, Motorola memperkenalkan 6800, lalu diikuti dengan 6502 dan 6809. Berikutnya tahun 1976 Intel mengembangkan 8084 yang merupakan keluarga MCS-48. Seri ini sudah memungkinkan storage data tersimpan on-chip, tetapi code program masih tersimpan pada memori program eksternal. Tidak lama berselang dari itu MCS-48 tergantikan dengan mikrokontroler keluarga MCS-51 di tahun 1980. Intel MCS-51 menggunakan 2-byte instruksi yang lebih fleksibel, tersedia on-chip memori program (RAM/ROM/EPROM) dan memori data yang sama besar, 128 byte. Dan dapat pula terkoneksikan dengan memori eksternal. Di tahun 1982 Motorola memperkenalkan memperkenalkan mikrokontroler 6805.

Pada tahun 1975 peripheral interface controller (PIC) terbentuk di Universitas Havard. Keluarga mikrokontroler PIC mulai dikenalkan pada tahun 1985 oleh Microchip. PIC menggunakan arsitektur Havard dan telah memiliki Reduce Intruction Set. Di tahun 1978 Intel mengmbangkan 8086 yang merupakan prosesor 16-bit. Seiring dengan ini Motorola meluncurkan mikroprosesor 16-bit 68000, sedangkan Zilog meluncurkan 16-bit mikroprosesor Z8000.

Pada juni 1997, mikrokontroler ATMEL 8-bit AVR dikenalkan ke pasar. dan hari ini telah banyak kluarga dari mikrokontroler yang bermunculan dari berbagai macam sumber dan berbagai macam versi.

ndoware_atmel-avr-atmega8

Mikrokomputer